question

Sean avatar image
0 Likes"
Sean asked Jason Lightfoot edited

How to write my code into the model

import random


population_size = 2000 # 基因種群大小

chromosome_length = 10 # 基因染色體長度

num_orders = 10 # 訂單數

mutation_rate = 0.01 # 基因突變率

max_generations = 1000 # 最大迭代次數


# 生成初始種群

def generate_initial_population():

population = []

for _ in range(population_size):

chromosome = []

selected_orders = set() # 用于跟踪已选择的订单

for _ in range(chromosome_length):

order = random.randint(1, num_orders) # 随机选择一个订单

while order in selected_orders: # 如果订单已被选择过,则重新选择

order = random.randint(1, num_orders)

selected_orders.add(order) # 将已选择的订单添加到集合中

machine = random.randint(1, 2) # 选择机台1或机台2

chromosome.append((order, machine))

population.append(chromosome)

return population


# 基因交配

def crossover(parent1, parent2):

point = random.randint(1, chromosome_length - 1)

child1 = parent1[:point] + parent2[point:]

child2 = parent2[:point] + parent1[point:]

return child1, child2


# 基因突變

def mutate(chromosome):

for i in range(chromosome_length):

order, machine = chromosome[i]

if random.random() < mutation_rate:

order = random.randint(1, num_orders) # 根据实际订单数量设定范围

if random.random() < mutation_rate:

machine = random.randint(1, 2)

chromosome[i] = (order, machine)

return chromosome


# 解碼染色體為排程

def decode_chromosome(chromosome):

order_sequence = []

machine_selection = []

for gene in chromosome:

order, machine = gene

order_sequence.append(order)

machine_selection.append(machine)

return order_sequence, machine_selection


# 修改後的 genetic_algorithm 函數

def genetic_algorithm():

population = generate_initial_population()


# 執行基因演算法的主循環

generation = 0 # 迭代計數器

while generation < max_generations:

# 選擇交配的父母

parent1 = random.choice(population)

parent2 = random.choice(population)


# 基因交配

child1, child2 = crossover(parent1, parent2)


# 基因突變

child1 = mutate(child1)

child2 = mutate(child2)


# 更新種群

population.append(child1)

population.append(child2)


# 缩减種群大小至原始規模

population = population[:population_size]


# 增加迭代計數器

generation += 1


best_chromosome = population[0] # 取第一个染色体作为最佳染色体


return best_chromosome


# 執行基因算法

best_chromosome = genetic_algorithm()


# 解碼最佳染色體

decoded_best_chromosome = decode_chromosome(best_chromosome)


# 輸出最佳排程结果

print("Best Chromosome:", decoded_best_chromosome)

FlexSim 22.2.0
python
5 |100000

Up to 12 attachments (including images) can be used with a maximum of 23.8 MiB each and 47.7 MiB total.

1 Answer

Jason Lightfoot avatar image
0 Likes"
Jason Lightfoot answered Jason Lightfoot edited

For each function create a user command using Flexscript. You'll need to choose types for your variables and align to Flexscript's rules for syntax, which are documented in the manual.

5 |100000

Up to 12 attachments (including images) can be used with a maximum of 23.8 MiB each and 47.7 MiB total.